车牌识别是基于计算机视觉和模式识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。车牌识别过程包括图像采集、车牌定位、字符分割、字符识别等一系列算法运算,其运行流程如下:
图像采集;
通过模拟摄像机或高清摄像机对过往车辆进行实时、不间断记录、采集。
车牌定位:
车牌定位的准确与否直接决定后面的字符分割和识别效果,是影响整个车牌识别率的重要因素。车牌定位算法的好坏,由车牌检出率来评估,目前市面上优秀的车牌识别系统,检出率能达到99%以上。其核心是利用车牌区域的纹理特性,进行车牌定位,常用的车牌检测算法包括:利用梯度信
息投影统计;利用小波变换作分割;车牌区域扫描连线算法;利用区域特性训练分类器的方法等。这些算法各有利弊,如何从复杂场景中提取出稳定可靠的车牌区域是一个难点。
字符分割:
在图像中定位出车牌区域后,通过灰度化、灰度拉伸、二值化、边缘化等处理,进--步精确定位字符区域,然后根据字符尺寸特征提出动态模板法进行字符分割,并将字符大小进行归一化处理。
字符识别:
对分割后的字符进行缩放、特征提取,获得特定字符的表达形式,然后通过分类器可以对字符进行识别,常用的分类算法有神经网络,SVM等。
以上是车牌识别厂家小编为您讲解的车牌识别软件原理,希望对感兴趣或者想了解其中工作原理的朋友有所帮助。
专业门禁安装公司:四川茂县车牌识别